Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Ann Clin Transl Neurol ; 11(4): 1075-1079, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504481

RESUMO

ATP1A1 encodes a sodium-potassium ATPase that has been linked to several neurological diseases. Using exome and genome sequencing, we identified the heterozygous ATP1A1 variant NM_000701.8: c.2707G>A;p.(Gly903Arg) in two unrelated children presenting with delayed motor and speech development and autism. While absent in controls, the variant occurred de novo in one proband and co-segregated in two affected half-siblings, with mosaicism in the healthy mother. Using a specific ouabain resistance assay in mutant transfected HEK cells, we found significantly reduced cell viability. Demonstrating loss of ATPase function, we conclude that this novel variant is pathogenic, expanding the phenotype spectrum of ATP1A1.


Assuntos
Transtorno Autístico , Deficiência Intelectual , Criança , Humanos , Transtorno Autístico/genética , Deficiência Intelectual/genética , Família , Irmãos , Adenosina Trifosfatases , ATPase Trocadora de Sódio-Potássio/genética
2.
JCI Insight ; 9(5)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38300707

RESUMO

Geleophysic dysplasia-1 (GD1) is an autosomal recessive disorder caused by ADAMTS-like 2 (ADAMTSL2) variants. It is characterized by distinctive facial features, limited joint mobility, short stature, brachydactyly, and life-threatening cardiorespiratory complications. The clinical spectrum spans from perinatal lethality to milder adult phenotypes. We developed and characterized cellular and mouse models, to replicate the genetic profile of a patient who is compound heterozygous for 2 ADAMTSL2 variants, namely p.R61H and p.A165T. The impairment of ADAMTSL2 secretion was observed in both variants, but p.A165T exhibited a more severe impact. Mice carrying different allelic combinations revealed a spectrum of phenotypic severity, from lethality in knockout homozygotes to mild growth impairment observed in adult p.R61H homozygotes. Homozygous and hemizygous p.A165T mice survived but displayed severe respiratory and cardiac dysfunction. The respiratory dysfunction mainly affected the expiration phase, and some of these animals had microscopic post-obstructive pneumonia. Echocardiograms and MRI studies revealed a significant systolic dysfunction, accompanied by a reduction of the aortic root size. Histology verified the presence of hypertrophic cardiomyopathy with myocyte hypertrophy, chondroid metaplasia, and mild interstitial fibrosis. This study revealed a substantial correlation between the degree of impaired ADAMTSL2 secretion and the severity of the observed phenotype in GD1.


Assuntos
Proteínas ADAMTS , Doenças do Desenvolvimento Ósseo , Deformidades Congênitas dos Membros , Adulto , Humanos , Animais , Camundongos , Proteínas ADAMTS/genética , Doenças do Desenvolvimento Ósseo/genética , Mutação , Fenótipo
3.
Eur J Hum Genet ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374469

RESUMO

Hearing loss (HL) is a heterogenous trait with pathogenic variants in more than 200 genes that have been discovered in studies involving small and large HL families. Over one-third of families with hereditary HL remain etiologically undiagnosed after screening for mutations in the recognized genes. Genetic heterogeneity complicates the analysis in multiplex families where variants in more than one gene can be causal in different individuals even in the same sibship. We employed exome or genome sequencing in at least two affected individuals with congenital or prelingual-onset, severe to profound, non-syndromic, bilateral sensorineural HL from four multiplex families. Bioinformatic analysis was performed to identify variants in known and candidate deafness genes. Our results show that in these four families, variants in a single HL gene do not explain HL in all affected family members, and variants in another known or candidate HL gene were detected to clarify HL in the entire family. We also present a variant in TOGARAM2 as a potential cause underlying autosomal recessive non-syndromic HL by showing its presence in a family with HL, its expression in the cochlea and the localization of the protein to cochlear hair cells. Conclusively, analyzing all affected family members separately can serve as a good source for the identification of variants in known and novel candidate genes for HL.

4.
Nat Commun ; 15(1): 1758, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413582

RESUMO

SNURPORTIN-1, encoded by SNUPN, plays a central role in the nuclear import of spliceosomal small nuclear ribonucleoproteins. However, its physiological function remains unexplored. In this study, we investigate 18 children from 15 unrelated families who present with atypical muscular dystrophy and neurological defects. Nine hypomorphic SNUPN biallelic variants, predominantly clustered in the last coding exon, are ascertained to segregate with the disease. We demonstrate that mutant SPN1 failed to oligomerize leading to cytoplasmic aggregation in patients' primary fibroblasts and CRISPR/Cas9-mediated mutant cell lines. Additionally, mutant nuclei exhibit defective spliceosomal maturation and breakdown of Cajal bodies. Transcriptome analyses reveal splicing and mRNA expression dysregulation, particularly in sarcolemmal components, causing disruption of cytoskeletal organization in mutant cells and patient muscle tissues. Our findings establish SNUPN deficiency as the genetic etiology of a previously unrecognized subtype of muscular dystrophy and provide robust evidence of the role of SPN1 for muscle homeostasis.


Assuntos
Distrofias Musculares , Criança , Humanos , Distrofias Musculares/genética , Distrofias Musculares/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , RNA/metabolismo , Splicing de RNA/genética , Spliceossomos/genética , Spliceossomos/metabolismo
5.
Am J Med Genet A ; : e63563, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38352997

RESUMO

Autosomal dominant sensorineural hearing loss (ADSNHL) is a genetically heterogeneous disorder caused by pathogenic variants in various genes, including MYH14. However, the interpretation of pathogenicity for MYH14 variants remains a challenge due to incomplete penetrance and the lack of functional studies and large families. In this study, we performed exome sequencing in six unrelated families with ADSNHL and identified five MYH14 variants, including three novel variants. Two of the novel variants, c.571G > C (p.Asp191His) and c.571G > A (p.Asp191Asn), were classified as likely pathogenic using ACMG and Hearing Loss Expert panel guidelines. In silico modeling demonstrated that these variants, along with p.Gly1794Arg, can alter protein stability and interactions among neighboring molecules. Our findings suggest that MYH14 causative variants may be more contributory and emphasize the importance of considering this gene in patients with nonsyndromic mainly post-lingual severe form of hearing loss. However, further functional studies are needed to confirm the pathogenicity of these variants.

6.
Am J Med Genet A ; : e63556, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38348595

RESUMO

Phenotypic features of a hereditary connective tissue disorder, including craniofacial characteristics, hyperextensible skin, joint laxity, kyphoscoliosis, arachnodactyly, inguinal hernia, and diverticulosis associated with biallelic pathogenic variants in EFEMP1 have been previously described in four patients. Genome sequencing on a proband and her mother with comparable phenotypic features revealed that both patients were heterozygous for a stop-gain variant c.1084C>T (p.Arg362*). Complementary RNA-seq on fibroblasts revealed significantly reduced levels of mutant EFEMP1 transcript. Considering the absence of other molecular explanations, we extrapolated that EFEMP1 could be the cause of the patient's phenotypes. Furthermore, nonsense-mediated decay was demonstrated for the mutant allele as the principal mechanism for decreased levels of EFEMP1 mRNA. We provide strong clinical and genetic evidence for the haploinsufficiency of EFEMP1 due to nonsense-medicated decay to cause severe kyphoscoliosis, generalized hypermobility of joints, high and narrow arched palate, and potentially severe diverticulosis. To the best of our knowledge, this is the first report of an autosomal dominant EFEMP1-associated hereditary connective tissue disorder and therefore expands the phenotypic spectrum of EFEMP1 related disorders.

7.
Hum Genomics ; 17(1): 103, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-37996878

RESUMO

BACKGROUND: We analyzed the genetic causes of sensorineural hearing loss in racial and ethnic minorities of South Florida by reviewing demographic, phenotypic, and genetic data on 136 patients presenting to the Hereditary Hearing Loss Clinic at the University of Miami. In our retrospective chart review, of these patients, half self-identified as Hispanic, and the self-identified racial distribution was 115 (86%) White, 15 (11%) Black, and 6 (4%) Asian. Our analysis helps to reduce the gap in understanding the prevalence, impact, and genetic factors related to hearing loss among diverse populations. RESULTS: The causative gene variant or variants were identified in 54 (40%) patients, with no significant difference in the molecular diagnostic rate between Hispanics and Non-Hispanics. However, the total solve rate based on race was 40%, 47%, and 17% in Whites, Blacks, and Asians, respectively. In Non-Hispanic Whites, 16 different variants were identified in 13 genes, with GJB2 (32%), MYO7A (11%), and SLC26A4 (11%) being the most frequently implicated genes. In White Hispanics, 34 variants were identified in 20 genes, with GJB2 (22%), MYO7A (7%), and STRC-CATSPER2 (7%) being the most common. In the Non-Hispanic Black cohort, the gene distribution was evenly dispersed, with 11 variants occurring in 7 genes, and no variant was identified in 3 Hispanic Black probands. For the Asian cohort, only one gene variant was found out of 6 patients. CONCLUSION: This study demonstrates that the diagnostic rate of genetic studies in hearing loss varies according to race in South Florida, with more heterogeneity in racial and ethnic minorities. Further studies to delineate deafness gene variants in underrepresented populations, such as African Americans/Blacks from Hispanic groups, are much needed to reduce racial and ethnic disparities in genetic diagnoses.


Assuntos
Perda Auditiva Neurossensorial , Humanos , Asiático/genética , Negro ou Afro-Americano/genética , DNA/genética , Florida/epidemiologia , Perda Auditiva Neurossensorial/epidemiologia , Perda Auditiva Neurossensorial/genética , Hispânico ou Latino/genética , Peptídeos e Proteínas de Sinalização Intercelular , Estudos Retrospectivos , Brancos/genética
8.
Am J Med Genet A ; 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37984424

RESUMO

Chanarin-Dorfman syndrome is an autosomal recessively inherited disorder characterized by ichthyosis, sensorineural hearing loss, and hepatic dysfunction. We report on a 60-year-old female of Venezuelan descent who presented with congenital ichthyosis, progressive sensorineural hearing loss, and liver cirrhosis. We identify a heterozygous copy number deletion involving exon 1 and another heterozygous deletion involving exon 3 of the ABHD5 gene. Exon 2 is preserved. Both deletions were confirmed with RT-PCR. RNAseq from peripheral blood shows a reduction of ABHD5 expression overall and an absence of exon 3 expression, confirming the deleterious effects of the identified deletions. We present exonic deletions as a potentially common type of ABHD5 variation.

9.
Sci Rep ; 13(1): 17010, 2023 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-37814107

RESUMO

Hereditary hearing loss (HL) is a genetically heterogeneous disorder affecting people worldwide. The implementation of advanced sequencing technologies has significantly contributed to the identification of novel genes involved in HL. In this study, probands of two Turkish families with non-syndromic moderate HL were subjected to exome sequencing. The data analysis identified the c.600G > A (p.Thr200Thr) and c.1863dupG (p.His622fs) variants in GPR156, which co-segregated with the phenotype as an autosomal recessive trait in the respective families. The in silico predictions and a minigene assay showed that the c.600G > A variant disrupts mRNA splicing. This gene belongs to the family of G protein-coupled receptors whose function is not well established in the inner ear. GPR156 variants have very recently been reported to cause HL in three families. Our study from a different ethnic background confirms GPR156 as a bona fide gene involved in HL in humans. Further investigation towards the understanding of the role of GPCRs in the inner ear is warranted.


Assuntos
Surdez , Orelha Interna , Perda Auditiva Neurossensorial , Receptores Acoplados a Proteínas G , Humanos , Perda Auditiva Neurossensorial/genética , Mutação , Linhagem , Fenótipo , Splicing de RNA , Receptores Acoplados a Proteínas G/genética
10.
J Hum Genet ; 68(10): 657-669, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37217689

RESUMO

Hearing loss (HL) is a common heterogeneous trait that involves variants in more than 200 genes. In this study, we utilized exome (ES) and genome sequencing (GS) to effectively identify the genetic cause of presumably non-syndromic HL in 322 families from South and West Asia and Latin America. Biallelic GJB2 variants were identified in 58 probands at the time of enrollment these probands were excluded. In addition, upon review of phenotypic findings, 38/322 probands were excluded based on syndromic findings at the time of ascertainment and no further evaluation was performed on those samples. We performed ES as a primary diagnostic tool on one or two affected individuals from 212/226 families. Via ES we detected a total of 78 variants in 30 genes and showed their co-segregation with HL in 71 affected families. Most of the variants were frameshift or missense and affected individuals were either homozygous or compound heterozygous in their respective families. We employed GS as a primary test on a subset of 14 families and a secondary tool on 22 families which were unsolved by ES. Although the cumulative detection rate of causal variants by ES and GS is 40% (89/226), GS alone has led to a molecular diagnosis in 7 of 14 families as the primary tool and 5 of 22 families as the secondary test. GS successfully identified variants present in deep intronic or complex regions not detectable by ES.


Assuntos
Surdez , Perda Auditiva , Humanos , Surdez/genética , Perda Auditiva/genética , Perda Auditiva/diagnóstico , Fenótipo , Homozigoto , Mutação , Linhagem
11.
Am J Med Genet A ; 191(7): 1911-1916, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36987712

RESUMO

Recurrent de novo missense variants in H4 histone genes have recently been associated with a novel neurodevelopmental syndrome that is characterized by intellectual disability and developmental delay as well as more variable findings that include short stature, microcephaly, and facial dysmorphisms. A 4-year-old male with autism, developmental delay, microcephaly, and a happy demeanor underwent evaluation through the Undiagnosed Disease Network. He was clinically suspected to have Angelman syndrome; however, molecular testing was negative. Genome sequencing identified the H4 histone gene variant H4C5 NM_003545.4: c.295T>C, p.Tyr99His, which parental testing confirmed to be de novo. The variant met criteria for a likely pathogenic classification and is one of the seven known disease-causing missense variants in H4C5. A comparison of our proband's findings to the initial description of the H4-associated neurodevelopmental syndrome demonstrates that his phenotype closely matches the spectrum of those reported among the 29 affected individuals. As such, this report corroborates the delineation of neurodevelopmental syndrome caused by de novo missense H4 gene variants. Moreover, it suggests that cases of clinically suspected Angelman syndrome without molecular confirmation should undergo exome or genome sequencing, as novel neurodevelopmental syndromes with phenotypes overlapping with Angelman continue to be discovered.


Assuntos
Síndrome de Angelman , Deficiência Intelectual , Microcefalia , Transtornos do Neurodesenvolvimento , Masculino , Humanos , Síndrome de Angelman/diagnóstico , Síndrome de Angelman/genética , Microcefalia/genética , Histonas/genética , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Fenótipo , Transtornos do Neurodesenvolvimento/diagnóstico , Transtornos do Neurodesenvolvimento/genética , Mutação de Sentido Incorreto/genética
12.
Am J Ophthalmol ; 251: 90-103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36906093

RESUMO

PURPOSE: We compared next generation sequencing multigene panels (NGS-MGP) from 5 commercial laboratories to inform ophthalmologists' decision making in diagnostic genetic testing for congenital anterior segment anomalies (CASAs). DESIGN: Comparison of commercial genetic testing panels. METHODS: This observational study gathered publicly available information on NGS-MGP from 5 commercial laboratories for the following: cataracts, glaucoma, anterior segment dysgenesis (ASD), microphthalmia-anophthalmia-coloboma (MAC), corneal dystrophies, and Axenfeld-Rieger syndrome (ARS). We compared gene panel composition, consensus rate (genes covered by all the panels per condition, "concurrent"), dissensus rate (genes covered by only 1 panel per condition, "standalone"), and intronic variant coverage. For individual genes, we compared publication history and association with systemic conditions. RESULTS: Altogether, cataract, glaucoma, corneal dystrophies, MAC, ASD, and ARS panels tested 239, 60, 36, 292, and 10 discrete genes, respectively. The consensus rate varied between 16% and 50%, and the dissensus rate varied between 14% and 74%. After pooling concurrent genes from all conditions, 20% of these genes were concurrent in 2 or more conditions. For both cataract and glaucoma, concurrent genes had significantly stronger correlation with the condition than standalone genes. CONCLUSIONS: The genetic testing of CASAs using NGS-MGPs is complicated, owing to their number, variety, and phenotypic and genetic overlap. Although the inclusion of additional genes, such as the standalone ones, might increase diagnostic yield, these genes are also less well studied, indicating uncertainty over their role in CASA pathogenesis. Rigorous prospective diagnostic yield studies of NGS-MGPs will aid in making decisions of panel selection for the diagnosis of CASAs.


Assuntos
Catarata , Coloboma , Distrofias Hereditárias da Córnea , Glaucoma , Microftalmia , Humanos , Estudos Prospectivos , Glaucoma/genética
13.
Am J Med Genet A ; 191(4): 1044-1049, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36628575

RESUMO

Phenotypic features of KBG syndrome include craniofacial anomalies, short stature, cognitive disability and behavioral findings. The syndrome is caused by heterozygous pathogenic single nucleotide variants and indels in ANKRD11, or a heterozygous deletion of 16q24.3 that includes ANKRD11. We performed genome sequencing on a patient with clinical manifestations of KBG syndrome including distinct craniofacial features as well as a history of mild intellectual disability and attention-deficit hyperactivity disorder. This led to the identification of a 43 kb intragenic deletion of ANKRD11 affecting the first noncoding exon while leaving the coding regions intact. Review of the literature shows that this is the smallest 5' deletion affecting only the noncoding exons of ANKRD11. Real-time polymerase chain reaction demonstrated that the copy number variant was not present in either of the proband's parents, suggesting it occurred de novo. RNA expression analysis demonstrated significantly decreased transcript abundance compared to controls. This provides new evidence for haploinsufficiency as a mechanism of disease in KBG syndrome.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/genética , Facies , Proteínas Repressoras/genética , Deleção Cromossômica , Fatores de Transcrição/genética , Fenótipo
14.
J AAPOS ; 26(6): 302.e1-302.e6, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36343799

RESUMO

BACKGROUND: Early-onset glaucoma is a potentially sight-threatening condition with high heritability. Next generation sequencing is a cost-effective alternative to individual gene screening that could expedite its diagnosis. However, the diagnostic yield of multigene panel assays for early-onset glaucoma varies according to the tested population. The purpose of this study was to ascertain the diagnostic yield of next generation sequencing panels in our cohort and to identify population characteristics that increase such yield. METHODS: We conducted a retrospective review of the medical records of consecutive patients from November 2016 to August 2021 who were evaluated at our clinics for early-onset glaucoma and had undergone next generation sequencing panels for molecular diagnosis. RESULTS: A total of 118 patients were included, in 22 of whom (19%) a causative variant was identified. Diagnostic yield varied by age of onset: of 60 patients with onset at <3 years of age, 19 (32%) had such variants identified. In contrast, of 58 patients with later-onset glaucoma, 3 (5%) had said variants identified (P = 0.0003). Other metrics that increased diagnostic yield were presence of additional ocular anomalies (P = 0.0092) and identifying ethnicity as White (compared with non-White, P = 0.0001). CONCLUSIONS: In childhood glaucoma, earlier age of onset is correlated with higher likelihood of pathogenic variant identification. The large proportion of unsolved cases indicates a robust opportunity for gene discovery and genetic therapy targets in early-onset glaucoma patients.


Assuntos
Glaucoma , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Adulto Jovem , Adulto , Pré-Escolar , Mutação , Glaucoma/diagnóstico , Glaucoma/genética , Estudos Retrospectivos , Testes Genéticos
15.
Proc Natl Acad Sci U S A ; 119(26): e2204084119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35727972

RESUMO

Discovery of deafness genes and elucidating their functions have substantially contributed to our understanding of hearing physiology and its pathologies. Here we report on DNA variants in MINAR2, encoding membrane integral NOTCH2-associated receptor 2, in four families underlying autosomal recessive nonsyndromic deafness. Neurologic evaluation of affected individuals at ages ranging from 4 to 80 y old does not show additional abnormalities. MINAR2 is a recently annotated gene with limited functional understanding. We detected three MINAR2 variants, c.144G > A (p.Trp48*), c.412_419delCGGTTTTG (p.Arg138Valfs*10), and c.393G > T, in 13 individuals with congenital- or prelingual-onset severe-to-profound sensorineural hearing loss (HL). The c.393G > T variant is shown to disrupt a splice donor site. We show that Minar2 is expressed in the mouse inner ear, with the protein localizing mainly in the hair cells, spiral ganglia, the spiral limbus, and the stria vascularis. Mice with loss of function of the Minar2 protein (Minar2tm1b/tm1b) present with rapidly progressive sensorineural HL associated with a reduction in outer hair cell stereocilia in the shortest row and degeneration of hair cells at a later age. We conclude that MINAR2 is essential for hearing in humans and mice and its disruption leads to sensorineural HL. Progressive HL observed in mice and in some affected individuals and as well as relative preservation of hair cells provides an opportunity to interfere with HL using genetic therapies.


Assuntos
Perda Auditiva Neurossensorial , Receptor Notch2 , Receptores de Superfície Celular , Animais , Perda Auditiva Neurossensorial/genética , Humanos , Mutação com Perda de Função , Camundongos , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Superfície Celular/genética , Estereocílios/metabolismo
16.
Mol Genet Genomic Med ; 10(4): e1892, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35247231

RESUMO

Neurodegenerative disorders and leukodystrophies are progressive neurologic conditions that can occur following the disruption of intricately coordinated patterns of gene expression. Exome sequencing has been adopted as an effective diagnostic tool for determining the underlying genetic etiology of Mendelian neurologic disorders, however genome sequencing offer advantages in its ability to identify and characterize copy number, structural, and sequence variants in noncoding regions. Genome sequencing from peripheral leukocytes was performed on two patients with progressive neurologic disease of unknown etiology following negative genetic investigations including exome sequencing. RNA sequencing from peripheral blood was performed to determine gene expression patterns in one of the patients. Potential causative variants were matched to the patients' clinical presentation. The first proband was found to be heterozygous for a likely pathogenic missense variant in PLA2G6 (c.386T>C; p.Leu129Pro) and have an additional deep intronic variant in PLA2G6 (c.2035-926G>A). RNA sequencing indicated this latter variant created a splice acceptor site leading to the incorporation of a pseudo-exon introducing a premature termination codon. The second proband was heterozygous for a 261 kb deletion upstream of LMNB1 that included an enhancer region. Previous reports of copy number variants spanning this region of cis-acting regulatory elements corroborated its pathogenicity. When combined with clinical presentations, these findings led to a definitive diagnosis of autosomal recessive infantile neuroaxonal dystrophy and autosomal dominant adult-onset demyelinating leukodystrophy, respectively. In patients with progressive neurologic disease of unknown etiology, genome sequencing with the addition of RNA analysis where appropriate should be considered for the identification of causative noncoding pathogenic variants.


Assuntos
Fosfolipases A2 do Grupo VI , Lamina Tipo B , Distrofias Neuroaxonais , Adulto , Sequência de Bases , Fosfolipases A2 do Grupo VI/genética , Fosfolipases A2 do Grupo VI/metabolismo , Heterozigoto , Humanos , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Distrofias Neuroaxonais/genética , Distrofias Neuroaxonais/metabolismo , Sítios de Splice de RNA , Sequenciamento do Exoma
17.
Turk J Biol ; 46(6): 458-464, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37529793

RESUMO

Majority of 37 human aminoacyl tRNA synthetases have been incriminated in diverse, mostly recessive, genetic diseases. In accordance with this, we uncovered a novel homozygous valyl-tRNA synthetase 1 (VARS1) gene variant, leading to p.T1068M mutation. As in the previously reported VARS1 mutations, the affected individual harboring p.T1068M was experiencing a neurodevelopmental disorder with intractable seizures, psychomotor retardation, and microcephaly. To link this phenotypic outcome with the observed genotype, we structurally modeled human VARS1 and interpreted p.T1068M within the spatial distribution of previously reported VARS1 variants. As a result, we uncovered that p.T1068M is clustered with three other pathogenic mutations in a 15 amino acid long stretch of the VARS1 anticodon-binding domain. While forming a helix-turn-helix motif within the anticodon-binding domain, this stretch harbors one-fourth of the reported VARS1 mutations. Here, we propose that these clustered mutations can destabilize the interactions between the anticodon-binding and the tRNA synthetase domains and thus hindering the optimal enzymatic activity of VARS1. We expect that the depiction of this mutation cluster will pave the way for the development of drugs, capable of alleviating the functional impact of these mutations.

18.
Eur J Hum Genet ; 30(1): 7-12, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-33840813

RESUMO

Hearing loss (HL) is one of the most common sensory defects, of which X-linked nonsyndromic hearing loss (NSHL) accounts for only 1-2%. While a COL4A6 variant has been reported in a single Hungarian family with NSHL associated with inner ear malformation, causative role of COL4A6 variants and their phenotypic consequences in NSHL remain elusive. Here we report two families in which we identified a male member with X-linked HL. Each has inherited a rare hemizygous COL4A6 variant from their respective mothers, NM_001287758.1: c.3272 G > C (p.Gly1091Ala) and c.951 + 1 G > C. An in vitro minigene splicing assay revealed that c.951 + 1 G > T leads to skipping of exon 15, strongly suggesting a pathogenic role for this variant in the HL phenotype. The p.Gly1091Ala variant is classified as a variant of unknown significance based on the variant interpretation guidelines. This report provides evidence for variants in the COL4A6 gene resulting in X-linked NSHL. It highlights the importance of in-depth genetic studies in all family members in addition to the proband, especially in multiplex families, to determine the precise etiology of HL.


Assuntos
Colágeno Tipo IV/genética , Perda Auditiva Neurossensorial/genética , Feminino , Perda Auditiva Neurossensorial/patologia , Hemizigoto , Humanos , Masculino , Mutação de Sentido Incorreto , Linhagem
19.
Am J Med Genet A ; 185(4): 1236-1241, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33427402

RESUMO

Peroxisomes play an essential role in lipid metabolism via interaction with other intracellular organelles. The information about the role of the Acyl-CoA-binding domain containing-protein 5 (ACBD5) in these interactions in human cells is emerging. Moreover, a few patients with retinal dystrophy and leukodystrophy caused by pathogenic variants in ACBD5 have been recently introduced. Here, we present a 36-year-old female with retinal dystrophy, leukodystrophy, and psychomotor regression due to a novel homozygous variant in ACBD5. Our study adds to the growing knowledge of this peroxisomal disorder by providing phenotypic details of the first adult patient.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Predisposição Genética para Doença , Metabolismo dos Lipídeos/genética , Proteínas de Membrana/genética , Distrofias Retinianas/genética , Adulto , Feminino , Homozigoto , Humanos , Peroxissomos/genética , Peroxissomos/patologia , Distrofias Retinianas/metabolismo , Distrofias Retinianas/patologia
20.
Commun Biol ; 3(1): 792, 2020 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-33361775

RESUMO

The stereocilia of the inner ear sensory cells contain the actin-binding protein radixin, encoded by RDX. Radixin is important for hearing but remains functionally obscure. To determine how radixin influences hearing sensitivity, we used a custom rapid imaging technique to visualize stereocilia motion while measuring electrical potential amplitudes during acoustic stimulation. Radixin inhibition decreased sound-evoked electrical potentials. Other functional measures, including electrically induced sensory cell motility and sound-evoked stereocilia deflections, showed a minor amplitude increase. These unique functional alterations demonstrate radixin as necessary for conversion of sound into electrical signals at acoustic rates. We identified patients with RDX variants with normal hearing at birth who showed rapidly deteriorating hearing during the first months of life. This may be overlooked by newborn hearing screening and explained by multiple disturbances in postnatal sensory cells. We conclude radixin is necessary for ensuring normal conversion of sound to electrical signals in the inner ear.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Células Ciliadas Auditivas Externas/metabolismo , Proteínas de Membrana/metabolismo , Estereocílios/metabolismo , Estimulação Acústica , Alelos , Animais , Arsenicais/farmacologia , Pré-Escolar , Proteínas do Citoesqueleto/genética , Modelos Animais de Doenças , Feminino , Imunofluorescência , Expressão Gênica , Variação Genética , Genótipo , Cobaias , Células Ciliadas Auditivas Externas/efeitos dos fármacos , Perda Auditiva/diagnóstico , Perda Auditiva/genética , Humanos , Mecanotransdução Celular/genética , Proteínas de Membrana/genética , Modelos Biológicos , Linhagem , Estereocílios/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...